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Abstract. Hypervisors, popularized by Xen and
VMware, are quickly becoming commodity. They are
appropriate for many usage scenarios, but there are sce-
narios that require system virtualization with high de-
grees of both isolation and efficiency. Examples in-
clude HPC clusters, the Grid, hosting centers, and Plan-
etLab. We present an alternative to hypervisors that is
better suited to such scenarios. The approach is a syn-
thesis of prior work on resource containers and security
containers applied to general-purpose, time-shared op-
erating systems. Examples of such container-based sys-
tems include Solaris 10, Virtuozzo for Linux, and Linux-
VServer. As a representative instance of container-based
systems, this paper describes the design and implemen-
tation of Linux-VServer. In addition, it contrasts the ar-
chitecture of Linux-VServer with current generations of
Xen, and shows how Linux-VServer provides compara-
ble support for isolation and superior system efficiency.

1 Introduction

Operating system designers face a fundamental ten-
sion between isolating applications and enabling shar-
ing among them—to simultaneously support the illusion
that each application has the physical machine to itself,
yet let applications share objects (e.g., files, pipes) with
each other. Today’s commodity operating systems, de-
signed for personal computers and adapted from earlier
time-sharing systems, typically provide a relatively weak
form of isolation (the process abstraction) with generous
facilities for sharing (e.g., a global file system and global
process ids). In contrast, hypervisors strive to provide
full isolation between virtual machines (VMs), provid-
ing no more support for sharing between VMs than the
network provides between physical machines.

The workload requirements for a given system will di-
rect users to the point in the design space that requires
the least trade-off. For instance, workstation operating
systems generally run multiple applications on behalf of
a single user, making it natural to favor sharing over iso-
lation. On the other hand, hypervisors are often deployed
to let a single machine host multiple, unrelated applica-

tions, which may run on behalf of independent organi-
zations, as is common when a data center consolidates
multiple physical servers. The applications in such a
scenario have no need to share information. Indeed, it
is important they have no impact on each other. For this
reason, hypervisors heavily favor full isolation over shar-
ing. However, when each virtual machine is running the
same kernel and similar operating system distributions,
the degree of isolation offered by hypervisors comes at
the cost of efficiency relative to running all applications
on a single kernel.

A number of emerging usage scenarios—such as
HPC clusters, Grid, web/db/game hosting organizations,
distributed hosting (e.g., PlanetLab, Akamai, Amazon
EC2)—benefit from virtualization techniques that isolate
different groups of users and their applications from one
another. What these usage scenarios share is the need for
efficient use of system resources, either in terms of raw
performance for a single or small number of VMs, or in
terms of sheer scalability of concurrently active VMs.

This paper describes a virtualization approach de-
signed to enforce a high degree of isolation between VMs
while maintaining efficient use of system resources. The
approach synthesizes ideas from prior work on resource
containers [2, 14] and security containers [7, 18, 12, 24]
and applies it to general-purpose, time-shared operating
systems. Indeed, variants of such container-based oper-
ating systems are in production use today—e.g., Solaris
10 [18], Virtuozzo [22], and Linux VServer [11].

The paper makes two contributions. First, this is
the first thorough description of the techniques used by
VServer for an academic audience. We choose VServer
as the representative instance of the container-based sys-
tem for several reasons: 1) it is open source, 2) it is in
production use, and 3) because we have real data and
experience from operating 700+ VServer-enabled ma-
chines on PlanetLab [16].

Second, we contrast the architecture of VServer with
a recent generation of Xen, which has changed drasti-
cally since its original design was described by Barham
et al. [3]. In terms of performance, the two solutions are
equal for CPU bound workloads, whereas for I/O centric
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(server) workloads VServer makes more efficient use of
system resources and thereby achieves better overall per-
formance. In terms of scalability, VServer far surpasses
Xen in usage scenarios where overbooking of system re-
sources is required (e.g., PlanetLab, managed web host-
ing, etc), whereas for reservation based usage scenarios
involving a small number of VMs VServer retains an ad-
vantage as it inherently avoids duplicating operating sys-
tem state.

The next section presents a motivating case for con-
tainer based systems. Section 3 presents container-based
techniques in further detail, and describes the design and
implementation of VServer. Section 4 reproduces bench-
marks that have become familiar metrics for Xen and
contrasts those with what can be achieved by VServer.
Section 5 describes the kinds of interference observed
between VMs. Finally, Section 6 offers some conclud-
ing remarks.

2 Motivation

Virtual machine technologies are the product of diverse
groups with different terminology. To ease the prose,
we settle on referring to the isolated execution context
running on top of the underlying system providing vir-
tualization as a virtual machine (VM), rather than a do-
main, container, applet, guest, etc.. There are a variety of
VM architectures ranging from the hardware (e.g., Intel’s
VT.) up the full software including hardware abstraction
layer VMs (e.g., Xen, VMware ESX), system call layer
VMs (e.g., Solaris, Linux VServer), hosted VMs (e.g.,
VMware GSX), hosted emulators (e.g, QEMU), high-
level language VMs (e.g., Java), and application-level
VMs (e.g., Apache virtual hosting). Within this wide
range, we focus on comparing hypervisor technology
that isolate VMs at the hardware abstraction layer with
container-based operating system (COS) technology that
isolate VMs at the system call/ABI layer.

The remainder of this section first outlines the usage
scenarios of VMs to set the context within which we
compare and contrast the different approaches to virtu-
alization. We then make a case for container-based vir-
tualization with these usage scenarios.

2.1 Usage Scenarios

There are many innovative ideas that exploit VMs to se-
cure work environments on laptops, detect virus attacks
in real-time, determine the cause of computer break-ins,
and debug difficult to track down system failures. Today,
VMs are predominantly used by programmers to ease

software development and testing, by IT centers to con-
solidate dedicated servers onto more cost effective hard-
ware, and by traditional hosting organizations to sell vir-
tual private servers. Other emerging, real-world scenar-
ios for which people are either considering, evaluating,
or actively using VM technologies include HPC clusters,
the Grid, and distributed hosting organizations like Plan-
etLab. This paper focuses on these three emerging sce-
narios, for which efficiency is paramount.

Compute farms, as idealized by the Grid vision and
typically realized by HPC clusters, try to support many
different users (and their application’s specific software
configurations) in a batch-scheduled manner. While
compute farms do not need to run many concurrent VMs
(often just one per physical machine at a time), they are
nonetheless very sensitive to raw performance issues as
they try to maximize the number of jobs they can push
through the overall system per day. As well, experi-
ence shows that most software configuration problems
encountered on compute farms are due to incompatibil-
ities of the system software provided by a specific OS
distribution, as opposed to the kernel itself. Therefore,
giving users the ability to use their own distribution or
specialized versions of system libraries in a VM would
resolve this point of pain.

In contrast to compute farms, hosting organizations
tend to run many copies of the same server software, op-
erating system distribution, and kernels in their mix of
VMs. In for-profit scenarios, hosting organizations seek
to benefit from an economy of scale and need to reduce
the marginal cost per customer VM. Such hosting organi-
zations are sensitive to issues of efficiency as they try to
carefully oversubscribe their physical infrastructure with
as many VMs as possible, without reducing overall qual-
ity of service. Unfortunately, companies are reluctant to
release just how many VMs they operate on their hard-
ware.

Fortunately, CoMon [23]—one of the performance-
monitoring services running on PlanetLab—publicly re-
leases a wealth of statistics relating to the VMs oper-
ating on PlanetLab. PlanetLab is a non-profit consor-
tium whose charter is to enable planetary-scale network-
ing and distributed systems research at an unprecedented
scale. Research organizations join by dedicating at least
two machines connected to the Internet to PlanetLab.
PlanetLab lets researchers use these machines, and each
research project is placed into a separate VM per ma-
chine (referred to as a slice). PlanetLab supports a work-
load consisting of a mix of one-off experiments and long-
running services with its slice abstraction.

CoMon classifies a VM as active on a node if it con-

2



 0

 20

 40

 60

 80

 100

05/May 05/Jul 05/Sep 05/Nov 06/Jan 06/Mar

S
lic

es
 w

ith
 a

 p
ro

ce
ss

Min 1st Q Median 3rd Q Max

(a) Active slices, by quartile
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Figure 1: Active and live slices on PlanetLab

tains a process, and live if, in the last five minutes, it
used at least 0.1% (300ms) of the CPU. Figure 1 (re-
produced from [16]) shows, by quartile, the distribution
of active and live VMs across PlanetLab during the past
year. Each graph shows five lines; 25% of PlanetLab
nodes have values that fall between the first and second
lines, 25% between the second and third, and so on. We
note that, in any five-minute interval, it is not unusual to
see 10-15 live VMs and 60 active VMs on PlanetLab. At
the same time, PlanetLab nodes are PC-class boxes; the
average PlanetLab node has a 2GHz CPU and 1GB of
memory. Any system that hosts such a workload on sim-
ilar hardware must be concerned with both performance
and scalability of the underlying virtualization technol-
ogy.

2.2 Case for Container-Based Operating
System Virtualization

The case for COS virtualization rests on the observation
that it is acceptable in some real-world scenarios to trade
isolation for efficiency. Sections 4 and 5 demonstrate
quantitatively that a COS (VServer) is more efficient than
a well designed hypervisor (Xen). So, the question re-
mains: what must be traded off to get that performance
boost?

Efficiency can be measured in terms of overall perfor-
mance (throughput, latency, etc) and/or scalability (mea-
sured in number of concurrent VMs) afforded by the un-
derlying VM technology. Isolation is harder to quantify
than efficiency. A system provides full isolation when it

supports a combination of fault isolation, resource isola-
tion, and security isolation. As the following discussion
illustrates, there is significant overlap between COS- and
hypervisor-based technologies with respect to these iso-
lation characteristics.

Fault isolation reflects the ability to limit a buggy VM
from affecting the stored state and correct operation of
other VMs. To ensure complete fault isolation requires
that there is no direct sharing of code or data between
VMs. In COS- and hypervisor-based systems, the VMs
themselves are fully fault isolated from each other using
address spaces. The only code and data shared among
VMs is the underlying system providing virtualization—
i.e., the COS or hypervisor. Any fault in this shared code
base will cause the whole system to fail.

Arguably the smaller code base of a hypervisor–Xen
for x86 consists of roughly 80K lines of code–naturally
eases the engineering task to ensure its reliability. While
this may be true, a functioning hypervisor-based system
also requires a host VM that authorizes and multiplexes
access to devices. The host VM typically consists of a
fully fledged Linux (millions of lines of code) and there-
fore is the weak link with respect to fault isolation—i.e.,
any fault in the host VM will cause the whole system to
fail. Fraser et al. [6] propose to mitigate this problem by
isolating device drivers into independent driver domains
(IDDs).

While the overall Linux kernel is large due to the num-
ber of device drivers, filesystems, and networking proto-
cols, at its core it is less than 140K lines. To improve re-
silience to faults (usually stemming from drivers), Swift
et al. [21] propose to isolate device drivers into IDDs
within the Linux kernel using their Nooks technology.
Unfortunately, there exists no study that directly com-
pares Xen+IDD and Linux+Nooks quantitatively with
respect to their performance.

Assuming that various subsystems such as device
drivers, filesystems, networking protocols, etc. are rock
solid, then with respect to fault isolation the principle
difference between hypervisor- and COS-based systems
is in the interface they expose to VMs. Any vulnera-
bility exposed by the implementation of these interfaces
may let a fault from one VM leak to another. For hy-
pervisors there is a narrow interface to events and virtual
device, whereas for COSs there is the wide system call
ABI. Arguably it is easier to verify the narrow interface,
which implies that the interface exposed by hypervisors
are more likely to be correct.

Resource isolation corresponds to ability to account
for and enforce the resource consumption of one VM
such that guarantees and fair shares are preserved for
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other VMs. Undesired interactions between VMs are
sometimes called cross-talk [9]. Providing resource iso-
lation generally involves careful allocation and schedul-
ing of physical resources (e.g., cycles, memory, link
bandwidth, disk space), but can also be influenced by
sharing of logical resources, such as file descriptors,
ports, PIDs, and memory buffers. At one extreme, a vir-
tualized system that supports resource reservations might
guarantee that a VM will receive 100 million cycles per
second (Mcps) and 1.5Mbps of link bandwidth, indepen-
dent of any other applications running on the machine.
At the other extreme, a virtualized system might let VMs
obtain cycles and bandwidth on a demand-driven (best-
effort) basis. Many hybrid approaches are also possi-
ble: for instance, a system may enforce fair sharing of
resources between classes of VMs, which lets one over-
book available resources while preventing starvation in
overload scenarios. The key point is that both hypervi-
sors and COSs incorporate sophisticated resource sched-
ulers to avoid or minimize crosstalk.

Security isolation refers to the extent to which a vir-
tualized system limits access to (and information about)
logical objects, such as files, virtual memory addresses,
port numbers, user ids, process ids, and so on. In doing
so, security isolation promotes (1) configuration inde-
pendence, so that global names (e.g., of files, SysV Shm
keys) selected by one VM cannot conflict with names se-
lected by another VM; and (2) safety, such that when
global namespaces are shared, one VM is not able to
modify data and code belonging to another VM, thus di-
minishing the likelihood that a compromise to one VM
affects others on the same machine. A virtualized sys-
tem with complete security isolation does not reveal the
names of files or process ids belonging to another VM,
let alone let one VM access or manipulate such objects.
In contrast, a virtualized system that supports partial se-
curity isolation might support a shared namespace (e.g.,
a global file system), augmented with an access control
mechanism that limits the ability of one VM to manip-
ulate the objects owned by another VM. As discussed
later, some COSs opt to apply access controls on shared
namespaces, as opposed to maintaining autonomous and
opaque namespaces via contextualization, in order to im-
prove performance. In such a partially isolated scheme,
information leaks are possible, for instance, allowing
unauthorized users to potentially identify in-use ports,
user names, number of running processes, etc. But, both
hypervisors and COSs can hide logical objects in one
VM from other VMs to promote both configuration in-
dependence and system safety.
Discussion: VM technologies are often embraced for

their ability to provide strong isolation as well as other
value-added features. Table 1 provides a list of popular
value-added features that attract users to VM technolo-
gies, which include ability to run multiple kernels side-
by-side, have administrative power (i.e., root) within a
VM, checkpoint and resume, and migrate VMs between
physical hosts.

Features Hypervisor Containers
Multiple Kernels ✓ ✕
Administrative power (root) ✓ ✓
Checkpoint & Resume ✓ ✓ [15, 22, 17]

Live Migration ✓ ✓ [22, 17]

Live System Update ✕ ✓ [17]

Table 1: Feature comparison of hypervisor- and COS-
based systems

Since COSs rely on a single underlying kernel im-
age, they are of course not able to run multiple kernels
like hypervisors can. As well, the more low-level ac-
cess that is desired by users, such as the ability to load
a kernel module, th more code is needed to preserve
isolation of the relevant system. However, COSs can
support the remaining features with corresponding ref-
erences provided in Table 1. In fact, at least one solu-
tion supporting COS-based VM migration goes a step
further than hypervisor-based VM migration: it enables
VM migration from one kernel version to another. This
feature lets systems administrators do a Live System Up-
date on a running system, e.g., to release a new kernel
with bug/security fixes, performance enhancements, or
new features, without needing to reboot the VM. Kernel
version migration is possible because COS-based solu-
tions have explicit knowledge of the dependencies that
processes within a VM have to in-kernel structure [17].

Figure 2: Summary of existing hypervisor- and COS-
based technology
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Figure 2 summarizes the state-of-the-art in VM tech-
nology along the efficiency and isolation dimensions.
The x-axis counts how many of the three different kinds
of isolation are supported by a particular technology. The
y-axis is intended to be interpreted qualitatively rather
than quantitatively; as mentioned, later sections will fo-
cus on presenting quantitative results.

The basic observation made in the figure is, to date,
there is no VM technology that achieves the ideal of max-
imizing both efficiency and isolation. We argue that for
usage scenarios where efficiency trumps the need for full
isolation, a COS like VServer hits the sweet spot within
this space. Conversely, for scenarios where full isolation
is required, a hypervisor is best. Finally, since the two
technologies are not mutually exclusive, one can run a
COS in a VM on a hypervisor when appropriate.

3 Container-based Operating Systems

This section provides an overview of container-based
systems, describes the general techniques used to achieve
isolation, and presents the mechanisms with which Linux
VServer implements these techniques.

3.1 Overview

A container-based system provides a shared, virtualized
OS image, including a unique root file system, a (safely
shared) set of system executables and libraries, and what-
ever resources assigned to the VM when it is created.
Each VM can be booted and shut down just like a regu-
lar operating system, and rebooted in only seconds when
necessary. To applications and the user of a container-
based system, the VM appears just like a separate host.
Figure 3 schematically depicts the design.

As shown in the figure, there are three basic platform
groupings. The hosting platform consists essentially of

Figure 3: COS Overview

the shared OS image and a privileged host VM. This is
the VM that a system administrator uses to manage other
VMs. The virtual platform is the view of the system
as seen by the guest VMs. Applications running in the
guest VMs work just as they would on a corresponding
non-container-based OS image. At this level, there is lit-
tle difference between a container and hypervisor based
system. However, they differ fundamentally in the tech-
niques they use to implement isolation between VMs.

Figure 4 illustrates this by presenting a taxonomic
comparison of their security and resource isolation
schemes. As shown in the figure, the COS approach
to security isolation directly involves internal operating
system objects (PIDs, UIDs, Sys-V Shm and IPC, Unix
ptys, and so on). The basic techniques used to securely
use these objects involve: (1) separation of name spaces
(contexts), and (2) access controls (filters). The former
means that global identifiers (e.g., process ids, SYS V
IPC keys, user ids, etc.) live in completely different
spaces (for example, per VM lists), do not have pointers
to objects in other spaces belonging to a different VM,
and thus cannot get access to objects outside of its name
space. Through this contextualization the global identi-
fiers become per-VM global identifiers. Filters, on the
other hand, control access to kernel objects with runtime
checks to determine whether the VM has the appropri-
ate permissions. For a hypervisor security isolation is
also achieved with contextualization and filters, but gen-
erally these apply to constructs at the hardware abstrac-
tion layer such as virtual memory address spaces, PCI
bus addresses, devices, and privileged instructions.

The techniques used by COS- and hypervisor-based
systems for resource isolation are quite similar. Both
need to multiplex physical resources such as CPU cy-
cles, i/o bandwidth, and memory/disk storage. The latest
generation of the Xen hypervisor architecture focuses on
multiplexing the CPU. Control over all other physical re-
sources is delegated to one or more privileged host VMs,
which multiplex the hardware on behalf of the guest
VMs. Interestingly, when Xen’s host VM is based on
Linux, the resource controllers used to manage network
and disk i/o bandwidth among guest VMs are identical
to those used by Linux VServer. The two systems simply
differ in how they map VMs to these resource controllers.

As a point of reference, the Xen hypervisor for the
i32 architecture is about 80K lines of code, the paravir-
tualized variants of Linux require an additional 15K of
device drivers, and a view isolated changes to the core
Linux kernel code. In contrast, the VServer adds less
than 8700 lines of code to the Linux kernel, and due
to its mostly architecture independent nature it has been
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Figure 4: Isolation Taxonomy of COS and Hypervisor-based Systems

validated to work on eight different instruction set ar-
chitectures. While lightweight in terms of lines of code
involved, VServer introduces 50+ new kernel files and
touches 300+ existing ones—representing a non-trivial
software-engineering task.

3.2 VServer Resource Isolation

This section describes in what way Linux VServer im-
plements resource isolation. It is mostly an exercise of
leveraging existing resource management and account-
ing facilities already present in Linux. For both physical
and logical resources, VServer simply imposes limits on
how much of a resource a VM can consume.

3.2.1 CPU Scheduling: Fair Share and Reservations

Linux VServer implements CPU isolation by overlaying
a token bucket filter (TBF) on top of the standard O(1)
Linux CPU scheduler. Each VM has a token bucket that
accumulates tokens at a specified rate; every timer tick,
the VM that owns the running process is charged one
token. A VM that runs out of tokens has its processes re-
moved from the run-queue until its bucket accumulates a
minimum amount of tokens. Originally the VServer TBF
was used to put an upper bound on the amount of CPU
that any one VM could receive. However, it is possible
to express a range of isolation policies with this simple
mechanism. We have modified the TBF to provide fair
sharing and/or work-conserving CPU reservations.

The rate that tokens accumulate in a VM’s bucket de-
pends on whether the VM has a reservation and/or a
share. A VM with a reservation accumulates tokens at
its reserved rate: for example, a VM with a 10% reserva-
tion gets 100 tokens per second, since a token entitles it
to run a process for one millisecond. A VM with a share

that has runnable processes will be scheduled before the
idle task is scheduled, and only when all VMs with reser-
vations have been honored. The end result is that the
CPU capacity is effectively partitioned between the two
classes of VMs: VMs with reservations get what they’ve
reserved, and VMs with shares split the unreserved ca-
pacity of the machine proportionally. Of course, a VM
can have both a reservation (e.g., 10%) and a fair share
(e.g., 1/10 of idle capacity).

3.2.2 I/O QoS: Fair Share and Reservations

The Hierarchical Token Bucket (htb) queuing discipline
of the Linux Traffic Control facility (tc) [10] is used to
provide network bandwidth reservations and fair service
among VServer. For each VM, a token bucket is created
with a reserved rate and a share: the former indicates the
amount of outgoing bandwidth dedicated to that VM, and
the latter governs how the VM shares bandwidth beyond
its reservation. Packets sent by a VServer are tagged with
its context id in the kernel, and subsequently classified
to the VServer’s token bucket. The htb queuing disci-
pline then allows each VServer to send packets at the
reserved rate of its token bucket, and fairly distributes
the excess capacity to the VServer in proportion to their
shares. Therefore, a VM can be given a capped reser-
vation (by specifying a reservation but no share), “fair
best effort” service (by specifying a share with no reser-
vation), or a work-conserving reservation (by specifying
both).

Disk I/O is managed in VServer using the standard
Linux CFQ (“completely fair queuing”) I/O scheduler.
The CFQ scheduler attempts to divide the bandwidth of
each block device fairly among the VMs performing I/O
to that device.
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3.2.3 Storage Limits

VServer provides the ability to associate limits to the
amount of memory and disk storage a VM can acquire.
For disk storage one can specify limits on the max num-
ber of disk blocks and inodes a VM can allocate. For
memory storage one can specify the following limits:
a) the maximum resident set size (RSS), b) number of
anonymous memory pages have (ANON), and c) num-
ber of pages that may be pinned into memory using
mlock() and mlockall() that processes may have within
a VM (MEMLOCK). Also, one can declare the number
of pages a VM may declare as SYSV shared memory.

Note that fixed upper bounds on RSS are not appro-
priate for usage scenarios where administrators wish to
overbook VMs. In this case, one option is to let VMs
compete for memory, and use a watchdog daemon to re-
cover from overload cases—for example by killing the
VM using the most physical memory. PlanetLab [16] is
one example where memory is a particularly scarce re-
source, and memory limits without overbooking are im-
practical: given that there are up to 90 active VMs on
a PlanetLab server, this would imply a tiny 10MB al-
location for each VM on the typical PlanetLab server
with 1GB of memory. Instead, PlanetLab provides ba-
sic memory isolation between VMs by running a simple
watchdog daemon, called pl mom, that resets the VM
consuming the most physical memory when swap has al-
most filled. This penalizes the memory hog while keep-
ing the system running for everyone else, and is effec-
tive for the workloads that PlanetLab supports. A similar
technique is apparently used by managed web hosting
companies.

3.3 VServer Security Isolation

VServer makes a number of kernel modifications to en-
force security isolation.

3.3.1 Process Filtering

VServer reuses the global PID space across all VMs. In
contrast, other container-based systems such as OpenVZ
contextualize the PID space per VM. There are obvious
benefits to the latter, specifically it eases the implementa-
tion of VM checkpoint, resume, and migration more eas-
ily as processes can be re-instantiated with the same PID
they had at the time of checkpoint. VServer will move to
this model, but for the sake of accuracy and completeness
we will describe its current model.

VServer filters processes in order to hide all processes
outside a VM’s scope, and prohibits any unwanted in-

teraction between a process inside a VM and a process
belonging to another VM. This separation requires the
extension of some existing kernel data structures in order
for them to: a) become aware to which VM they belong,
and b) differentiate between identical UIDs used by dif-
ferent VMs.

To work around false assumptions made by some user-
space tools (like pstree) that the ’init’ process has to exist
and have PID 1, VServer also provides a per VM map-
ping from an arbitrary PID to a fake init process with PID
1.

When a VServer-based system boots, all processes be-
long to a default host VM. To simply system administra-
tion, this host VM is no different than any other guest
VM in that one can only observe and manipulate pro-
cesses belonging to that VM. However, to allow for a
global process view, VServer defines a special spectator
VM that can peek at all processes at once.

A side effect of this approach is that process migra-
tion from one VM to another VM on the same host is
achieved by changing its VM association and updating
the corresponding per-VM resource usage statistics such
NPROC, NOFILE, RSS, ANON, MEMLOCK, etc..

3.3.2 Network Separation

Currently, VServer does not fully virtualize the net-
working subsystem, as is done by OpenVZ and other
container-based systems. Rather, it shares the network-
ing subsystem (route tables, IP tables, etc.) between all
VMs, but only lets VMs bind sockets to a set of available
IP addresses specified either at VM creation or dynami-
cally by the default host VM. This has the drawback that
it does not let VMs change their route table entries or IP
tables rules. However, it was a deliberate design deci-
sion to achieve native Linux networking performance at
GigE+ line rates.

For VServer’s network separate approach several is-
sues have to be considered; for example, the fact that
bindings to special addresses like IPADDR ANY or the
local host address have to be handled to avoid having one
VM receive or snoop traffic belonging to another VM.
The approach to get this right involves tagging packets
with the appropriate VM identifier and incorporating the
appropriate filters in the networking stack to ensure only
the right VM can receive them. As will be shown later,
the overhead of this is minimal as high-speed networking
performance is indistinguishable between a native Linux
system and one enhanced with VServer.
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3.3.3 The Chroot Barrier

One major problem of the chroot() system used in Linux
lies within the fact that this information is volatile, and
will be changed on the ’next’ chroot() system call. One
simple method to escape from a chroot-ed environment
is as follows:

• Create or open a file and retain the file-descriptor,
then chroot into a subdirectory at equal or lower
level with regards to the file. This causes the ’root’
to be moved ’down’ in the filesystem.

• Use fchdir() on the file descriptor to escape from
that ’new’ root. This will consequently escape from
the ’old’ root as well, as this was lost in the last
chroot() system call.

VServer uses a special file attribute, known as the Ch-
root Barrier, on the parent directory of each VM to pre-
vent unauthorized modification and escape from the ch-
root confinement.

3.3.4 Upper Bound for Linux Capabilities

Because the current Linux Capability system does not
implement the filesystem related portions of POSIX Ca-
pabilities that would make setuid and setgid executables
secure, and because it is much safer to have a secure up-
per bound for all processes within a context, an addi-
tional per-VM capability mask has been added to limit
all processes belonging to that context to this mask. The
meaning of the individual caps of the capability bound
mask is exactly the same as with the permitted capability
set.

3.4 Filesystem Unification

One central objective of VServer is to reduce the overall
resource usage wherever possible. VServer implements
a simple disk space saving technique by using a simple
unification technique applied at the whole file level. The
basic approach is that files common to more than one
VM, which are rarely going to change (e.g., like libraries
and binaries from similar OS distributions), can be hard
linked on a shared filesystem. This is possible because
the guest VMs can safely share filesystem objects (in-
odes). The technique reduces the amount of disk space,
inode caches, and even memory mappings for shared li-
braries.

The only drawback is that without additional mea-
sures, a VM could (un)intentionally destroy or modify
such shared files, which in turn would harm/interfere

other VMs. The approach taken by VServer is to mark
the files as copy-on-write. When a VM attempts to mu-
tate a hard linked file with CoW attribute set, VServer
will give the VM a private copy of the file.

Such CoW hard linked files belonging to more than
one context are called ’unified’ and the process of find-
ing common files and preparing them in this way is
called Unification. The reason for doing this is re-
duced resource consumption, not simplified administra-
tion. While a typical Linux Server install will consume
about 500MB of disk space, 10 unified servers will only
need about 700MB and as a bonus use less memory for
caching.

4 System Efficiency

This section explores the performance and scalability of
container- and hypervisor-based virtualization. We re-
fer to the combination of performance and scale as the
efficiency of the system, since these metrics correspond
directly to how well the virtualizing system orchestrates
the available physical resources for a given workload.

For all tests, VServer performance is comparable to an
unvirtualized Linux kernel. Yet, the comparison shows
that although Xen3 continues to include new features and
optimizations, the overhead required by the virtual mem-
ory sub-system still introduces an overhead of up to 72%
for shell execution. In terms of absolute performance on
server-type workloads, Xen3 lags an unvirtualized sys-
tem by up to 38% for network throughput while demand-
ing a comparable CPU load, and 25% for disk intensive
workloads.

All experiments are run on an HP DL360 Proliant
with dual 3.2 GHz Xeon processor, 4GB RAM, two
Broadcom NetXtreme GigE Ethernet controllers, and
two 160GB 7.2k RPM SATA-100 disks. The Xeon pro-
cessors each have a 2MB L2 cache. Due to reports [20]
indicating that hyper-threading actually degrades perfor-
mance for certain environments, we run all tests with
hyper-threading disabled. The three kernels under test
were compiled for uniprocessor as well as SMP archi-
tectures, and unless otherwise noted, all experiments run
within a single VM provisioned with all available re-
sources. In the case of Xen, the hypervisor does not
include any device drivers. This requires a privileged
host VM that exposes devices to guests. In our tests, the
host VM used an additional 512MB, leaving 3000 MB
for guests.

Linux and its derived systems have hundreds of sys-
tem configuration options, each of which can potentially
impact system behavior. We have taken the necessary

8



steps to normalize the effect of as many configuration
options as possible, by preserving homogeneous setup
across systems, starting with the hardware, kernel config-
uration, filesystem partitioning, and networking settings.
The goal is to ensure that observed differences in perfor-
mance are a consequence of the software architectures
evaluated, rather than a particular set of configuration op-
tions. Appendix A 1 describes the specific configurations
we have used in further detail.

The Xen configuration consists of Xen 3.0.2-testing 2.
The kernel configuration now allows a unified kernel,
where both the host and guest VM are the same binary,
but re-purposed at runtime. This kernel is derived from
the 2.6.16 Linux kernel. Also, since Xen 3.0.2 allows
guest VMs to leverage multiple virtual CPUs, our tests
also evaluate an SMP-enabled guest.

The VServer configuration consists of VServer 2.0.1
and Fedora Core 4 security patches, applied to a Linux
2.6.17 kernel. Our VServer kernel includes several ad-
ditions that have come as a result of VServer’s integra-
tion with Planetlab. As discussed earlier, these include
the new fair share CPU scheduler that preserves the ex-
isting O(1) scheduler, and enables CPU reservations for
VMs; a CFQ-based filter, which manages the disk re-
sources based on context id; and a hierarchical token
bucket packet scheduler, used to ensure fair sharing of
network I/O.

4.1 Micro-Benchmarks

While micro-benchmarks are incomplete indicators of
system behavior for real workloads [5], they do offer an
opportunity to observe the fine-grained impact that dif-
ferent virtualization techniques have on primitive OS op-
erations. In particular, the OS subset of McVoy’s lm-
bench benchmark [13] version 3.0-a3 includes experi-
ments designed to target exactly these subsystems.

For all three systems, the majority of the tests perform
worse in the SMP kernel than the UP kernel. While the
specific magnitudes may be novel, the trend is not sur-
prising, since the overhead inherent to synchronization,
internal communication, and caching effects of SMP sys-
tems is well known. For brevity, the following discussion
focuses on the overhead of virtualization using a unipro-
cessor kernel.

For the uniprocessor systems, our findings are consis-
tent with the original report of Barham et al [3] that

1While not included due to space constraints, the appendix is avail-
able at http://www.cs.princeton.edu/s̃oltesz/eurosys07/appendixA.pdf

2The pace of Xen development is very rapid. We have settled on a
single release known to be stable for our hardware and testing appara-
tus.

Config Linux-UP VServer-UP Xen3-UP
fork process 103.2 103.4 282.7
exec process 252.9 253.6 734.4
sh process 1054.9 1047.1 1816.3
ctx ( 2p/ 0K) 2.254 2.496 3.549
ctx (16p/16K) 3.008 3.310 4.133
ctx (16p/64K) 5.026 4.994 6.354
page fault 1.065 1.070 2.245

Table 2: LMbench OS benchmark timings for uniproces-
sor kernels – times in µs

Xen incurs a penalty for virtualizing the virtual mem-
ory hardware. While Xen3 has optimized page table up-
date operations in the guest kernels over Xen2, common
operations such as process executing, context switches
and page faults still incur observable overhead. Ta-
ble 2 shows results for the latency benchmarks, for which
there is discrepancy between Linux-UP, VServer-UP, and
Xen3-UP. The performance of the results not included
does not vary significantly; i.e., they are equal within the
margin of error.

The first three rows in Table 2 show the performance
of fork process, exec process, and sh process across the
systems. The performance of VServer-UP is always
within 1% of Linux-UP. Also of note, Xen3-UP perfor-
mance has improved over that of Xen2-UP due to opti-
mizations in the page table update code that batch pend-
ing transactions for a single call to the hypervisor. How-
ever, the effect is still observable.

The next three rows show context switch overhead
between different numbers of processes with different
working set sizes. As explained by Barham [3], the
1µs to 2µs overhead for these micro-benchmarks are due
to hypercalls from the guest VM into the hypervisor to
change the page table base. In contrast, there is little
overhead seen in VServer-UP relative to Linux-UP.

The difference across these micro-benchmarks comes
directly from the Xen hypercalls needed to update the
guest’s page table. This is one of the most common op-
erations in a multi-user system. While, optimizations for
batching updates have occurred in Xen3, this inherent
overhead is still measurable.

4.2 System Benchmarks

Two factors contribute to performance overhead in the
Xen3 hypervisor system: overhead in network I/O and
overhead in disk I/O. Exploring these elements of a
server workload in isolation provides insight into the
sources of overhead. As well, we repeat various bench-
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Figure 5: CPU utilization during Network I/O.

marks used in the original and subsequent performance
measurements of Xen [3, 4, 6]. They exercise the whole
system with a range of server-type workloads to illustrate
the absolute performance offered by Linux, VServer, and
Xen3.

Figures 5, 6(a) and 6(b) include evaluations of all com-
binations of uniprocessor and SMP kernels and virtu-
alizing system. In particular, there are various multi-
threaded applications designed to create real-world,
multi-component stresses on a system, such as Iperf,
OSDB-IR, and a kernel compile. In addition, we ex-
plore several single-threaded applications such as a dd,
Dbench and Postmark to gain further insight into the
overhead of Xen.

Since we are running one VM per system, each VM
is provisioned with all available memory, minus that re-
quired by the virtualized system. Each reported score is
the median of 5 or more trials. All results are normalized
relative to Linux-UP, unless otherwise stated. The data
demonstrate that IO-bound applications suffer within a
Xen VM. However, there are some interesting details.

Iperf is an established tool [1] for measuring link
throughput with TCP or UDP traffic. We use it in
this environment to exercise the networking subsystem
of both virtualizing systems. Figure 5 illustrates both
the throughput achieved and the aggregate percentage
of CPU utilized to achieve this rate. First, maximum
throughput was recorded, and then the aggregate CPU
utilization was recorded independently, to avoid mea-
surement overhead interfering with throughput. Bars
on the left of each system correspond to the aggregate
throughput, while bars to the right represent aggregate
CPU utilization not reported idle by system performance
monitors (a maximum of 200%, from 100% on two

(a) Disk performance

(b) Performance of CPU and memory bound benchmarks

Figure 6: Relative performance of Linux, VServer, and
XenU kernels.

CPUs) 3.
The first three columns are trials run with the unipro-

cessor kernels. The Xen3-UP kernel is pinned to the
same CPU as the host VM and hypervisor, to reflect
performance on a uniprocessor machine. For the Xen3-
UP kernel, performance suffers a 38% overhead, while
VServer-UP performance is within 2% of Linux-UP. The
fourth column, is labeled ’Xen3 two CPUs’. In this case,
the uniprocessor kernels are still used, but rather than
pinning both kernels to a single CPU, the host and guest
VM are placed on opposing processors. The increased
burden of synchronization between CPUs (evidence by
increased aggregate CPU utilization) falls to the Xen hy-
pervisor. Though this increased CPU usage narrows the
gap only to a 21% overhead. The last three columns are
trials of the SMP kernels. Interestingly, all trials using

3Due to the different architecture of VServer and Xen, total CPU
utilization was recorded using the sysstat package on VServer and Xen-
Mon on Xen.
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two CPUs, either SMP or opposed uniprocessor kernels,
consume similar total CPU time, within 8%. As well, the
overall throughput increases for Xen-SMP over Xen-UP,
but still maintains a high overhead.

To provide an intuition for the origin of this overhead,
we observe that all I/O interrupts are first received by
the Xen host VM, since it is privileged to interact with
the physical devices. Then, a second virtual interrupt is
delivered to and handled by the guest. As a result, pack-
ets are effectively handled by two operating systems, on
both the incoming and outgoing path. While other work
has sought to optimize the communication channel, as
long as Xen uses the architecture of independent driver
domains, some overhead will remain.

This scenario of double-handling in Xen is similar for
data read from or written to virtual disks. Processes in
the guest initiate I/O and the guest VM commits transac-
tions to the virtual disk device. After this, the host VM
receives the data before finally committing it to the phys-
ical device.

Figure 6(a) demonstrates the relative performance of
workloads with differing working set sizes. DD high-
lights the overhead incurred by disk activity using this
I/O model. Here, we write a 6GB file to a scratch device.
Because dd is strictly I/O bound, the longer the code path
is from client to disk the more delay will accumulate over
time. This is observed in the 5-12% reduction in through-
put seen in the measurements of Xen3.

DBench is derived from the industry-standard Net-
Bench filesystem benchmark and emulates the load
placed on a file server by Windows 95 clients. The
dbench score represents the throughput experienced by
a single client performing around 90,000 file system op-
erations. Because DBench is a single-threaded applica-
tion, the Linux-SMP and VServer-SMP kernels have ad-
ditional overhead due to inherent overhead in SMP sys-
tems. Accordingly, the Xen3-UP performance is mod-
estly greater than that of Xen3-SMP, but again, both have
performance that is 19-25% less than Linux-UP, while
VServer-UP reflects the Linux performance.

Postmark [8] is also a single-threaded benchmark orig-
inally designed to stress filesystems with many small file
operations. It allows a configurable number of files and
directories to be created, followed by a number of ran-
dom transactions on these files. In particular, our config-
uration specifies 100,000 files and 200,000 transactions.
Postmark generates many small transactions like those
experienced by a heavily loaded email or news server,
from which it derives the name ’postmark’. For the first
time, Xen guests appear to perform better than the other
systems under these loads.

Each VM uses a dedicated partition. The improved
performance of Xen over Linux and VServer is due to
the fact that I/O requests committed to the virtual disk are
batched within the VM hosting the device before being
committed to the physical disk. This batching is easily
observed with iostat. While the amount of data written
by both the guest and host is equal, there are 8x the num-
ber of transactions issued by the guest VM to the virtual
device as issued to the physical device by the host VM.

Figure 6(b) demonstrates the relative performance of
several CPU and memory bound activities. These tests
are designed to explicitly avoid the I/O overhead seen
above. Instead, inefficiency here is a result of virtual
memory, scheduling or other intrinsic performance lim-
its. The first test is a single-threaded, CPU-only process.
When no other operation competes for CPU time, this
process receives all available system time. But, the work-
ing set size of this process fits in processor cache, and
does not reveal the additive effects of a larger working
set, as do the second and third tests.

The second test is a standard kernel compile. It uses
multiple threads and is both CPU intensive as well as ex-
ercising the filesystem with many small file reads and
creates. However, since compilation is largely CPU
bound, before measuring the compilation time, all source
files are moved to a RAMFS. Therefore, performance
times do not reflect disk related I/O effects. The figure
indicates that while performance is generally good for
Xen relative to Linux-UP, and overheads still range be-
tween 17% for Xen3-SMP and 5% for Xen3-UP.

Finally, the Open Source Database Benchmark
(OSDB) provides realistic load on a database server from
multiple clients. We report the Information Retrieval
(IR) portion, which consists of many small transactions,
all reading information from a 40MB database, again
cached in main memory. This behavior is consistent
with current web applications. Again, performance of
VServer-UP is comparable to that of Linux-UP, but we
do see a 35% reduction of throughput for Xen3-SMP rel-
ative to Linux-SMP. Not until we look at the performance
of this system at scale do the dynamics at play become
clear.

4.3 Performance at Scale

This section evaluates how effectively the virtualizing
systems provide performance at scale.

4.3.1 OSDB

Barham et al. point out that unmodified Linux cannot run
multiple instances of PostgreSQL due to conflicts in the
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Figure 7: OSDB-IR at Scale. Performance across multiple
VMs

SysV IPC namespace. However, VServer’s mechanisms
for security isolation contain the SysV IPC namespace
within each context. Therefore, using OSDB, we simul-
taneously demonstrate the security isolation available in
VServer that is unavailable in Linux, and the superior
performance available at scale in a COS-based design.

The Information Retrieval component of the OSDB
package requires memory and CPU time. If CPU time
or system memory is dominated by any one VM, then
the others will not receive a comparable share, causing
aggregate throughput to suffer. Figure 7 shows the re-
sults of running 1, 2, 4, and 8 simultaneous instances of
the OSDB IR benchmark. Each VM runs an instance of
PostgreSQL to serve the OSDB test.

A perfect virtualization would partition the share of
CPU time, buffer cache, and memory bandwidth per-
fectly among all active VMs and maintain the same ag-
gregate throughput as the number of active VMs in-
creased. However, for each additional VM, there is an
arithmetic increase in the number of processes and the
number of I/O requests. The diminishing trend observed
in Figure 7 for VServer-UP and VServer-SMP illustrates
the result. Since no virtualization is perfect, the intensity
of the workload adds increasingly more pressure to the
system and aggregate throughput diminishes.

Note that in Figure 7, the performance of all systems
diminishes as the scale increases. But, as the load for
Xen-UP approaches eight (8) simultaneous VMs, the
performance disparity of relative to VServer-UP grows
to 45%.

More surprising is the observed performance of Xen3-
SMP. Here, the aggregate throughput of the system in-
creases when two VMs are active, followed by the ex-

Figure 8: Aggregate CPU-time received in a fair-share
and 25% guarantee

pected diminishing performance. Of course, VServer-
SMP outperforms the Xen3-SMP system, but the total
performance in the VServer, eight VM case is greater
than any of the other Xen3-SMP tests. Therefore, the
higher absolute performance of VServer is primarily due
to the lower overhead imposed by the OS-virtualized ap-
proach. As a result, there is simply more CPU time left
to serve clients at increasing scale.

5 Resource Isolation

VServer borrows the resource limits already available
in Linux. Therefore, VServer can easily isolate VMs
running fork-bombs and other antisocial activity through
memory caps, process number caps, and other combina-
tions of resource limits.

While there are potentially many ways to define the
quality of resource isolation, we focus on two aspects.
First, the virtualized system should multiplex a device or
resource fairly when shared between multiple VMs. No
VM, no matter how aggressively it uses a resource should
interfere with the fair share of another VM. Whether re-
source allocations are fair-share or guaranteed, when the
resource in contention is the same for both VMs, we
call this single-dimensional isolation. Second, one VM
should have limited ability to affect the activity of an-
other using an unrelated resource. For instance, network
activity while another VM runs a CPU-only application,
cache hungry applications, disk I/O, etc, the overhead
should be bounded so that each still receives a fair share
of the resources available. Since the resources in con-
tention are now different, we call this multi-dimensional
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Figure 9: Database performance with competing VMs

isolation.

5.1 Single-dimensional Isolation

To investigate both isolation of a single resource and re-
source guarantees, we use a combination of CPU inten-
sive tasks. Hourglass is a synthetic real-time application
useful for investigating scheduling behavior at microsec-
ond granularity [19]. It is CPU-bound and involves no
I/O.

As shown in figure 8, we run either four or eight VMs
simultaneously. Each VM runs an instance of hourglass,
which records contiguous periods of time scheduled. Be-
cause hourglass uses no I/O, we may infer from the gaps
in its time-line that either another VM is running or the
virtualized system is running on behalf of another VM.
The aggregate in each case is nearly 100% of all sched-
uled time, with minor overheads in Xen, due to multiple
guest kernels.

In the four (4) and eight (8) VM case, each VM com-
petes for a fair share of available time, and each receives
approximately one fourth or one eighth. However, if the
amount granted by a fair-share of the system is not ade-
quate for a particular application, then the ability to make
guarantees through resource reservation is also an option.
The third column of figure 8 reports the amount of CPU
time received when the CPU reservation of one VM is
set to 25% of the system. As expected, 25% is delivered
by VServer-UP, -SMP, and Xen-UP.

Unfortunately, the Xen, sedf scheduler has known is-
sues with scheduling on SMP systems. As a result, prior-
ities can be assigned to VMs, but they are not scheduled
appropriately. Therefore, the final column for Xen-SMP
is not available.

5.2 Multi-dimensional Isolation and Re-
source Guarantees

Traditional time-sharing UNIX systems have a legacy of
vulnerability to layer-below attacks, due to unaccounted,
kernel resource consumption. To investigate whether
VServer is still susceptible to multi-dimensional inter-
ference, we elected to perform a variation of the multi-
OSDB database benchmark. Now, instead of all VMs
running a database, one will behave maliciously by per-
forming a continuous dd of a 6GB file to a separate par-
tition of a disk common to both VMs.

Figure 9 shows that OSDB on VServer suffers when
competing with an active dd when a swap drive is en-
abled. Because the Linux kernel block cache is both
global (shared by all VMs) and not accounted to the orig-
inating VM, the consequence is that dd adds significant
pressure to available memory, polluting the block cache.
Therefore, less memory is available for other VMs, and
the performance of OSDB, which had run from a cached
database, suffers because it is forced to re-read from disk.

This vulnerability is not present in Xen since the block
cache is maintained by each kernel instance. Moreover,
each virtual block device is mapped to a unique thread
in the driver VM, allowing it to be governed by exist-
ing CFQ priorities. However, when the swap file for
VServer is disabled, as in column four, we see OSDB
performance returns to reasonable levels.

6 Conclusion

Virtualization technology brings benefits to a wide vari-
ety of usage scenarios. It provides many different tech-
niques to enhance system impregnability through isola-
tion, configuration independence and thereby software
interoperability, better system utilization, and account-
able and predictable performance. In terms of isola-
tion and efficiency, we expect ongoing efforts to improve
hypervisor- and container-based virtualization technolo-
gies along both dimensions.

In the mean time, for managed web hosting, Plan-
etLab, etc., the trade-off between isolation and effi-
ciency is of paramount importance. Experiments in-
dicate that container-based systems provide up to 2x
the performance of hypervisor-based systems for server-
type workloads. A number of different container- and
hypervisor-based technologies exist, and choosing one
for a particular system is clearly motivated by the set
of virtualization features it provides. However, we ex-
pect container-based systems like VServer to compete
strongly against hypervisor systems like Xen.
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